	SIDDHARTH INSTITUTE OF SCIENCE AND TECNOLOGY: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 <u>OUESTION BANK (DESCRIPTIVE)</u>						
	SUBJECT WITH CODE: 19EC0433-VLSI DESIGN COURSE & BRANCH:				B.Tech - ECE		
Ľ	YEA	R & SEM:	IV & I	REGULATION:	R19		
	UNIT –I INTRODUCTION AND BASIC ELECTRICAL PROPERTIES OF MOS AND Bi-CMOS CIRCUITS						
1	a)	Summarize the evolutio	n of microelectronics.		[L2][CO1]	[6 M]	
	b)	Explain working of the	NMOS transistor.		[L2][CO1]	[6 M]	
2	a)	Illustrate about basic M	OS transistors.		[L2][CO1]	[6 M]	
	b)	Compare different mode	es in NMOS Transistor.		[L2][CO1]	[6 M]	
3	a)	Define Metal Oxide Ser	niconductor VLSI Technolog	<u>у</u> .	[L2][CO1]	[6 M]	
	b)	List the advantages and	disadvantages of IC.		[L1][CO1]	[6 M]	
4	a)	Illustrate the steps invol	ved in NMOS fabrication pro	ocess with neat sketches.	[L2][CO2]	[6 M]	
	b)	Discuss about body bias	s effect in the NMOS transisto	or.	[L2][CO1]	[6 M]	
5		sketches.	ed in P-Well CMOS fabrication	_	[L2][CO2]	[12M]	
6	a)	Compare CMOS with b	ipolar technology in different	aspects.	[L2][CO1]	[6 M]	
	b)	State the different types involved in Twin Tub P	of CMOS Process and illustr rocess.	ate the additional steps	[L2][CO2]	[6 M]	
7	a)	Determine the relations	hip between $I_{ds} \& V_{ds}$ in non-	saturated region.	[L3][CO2]	[6 M]	
	b)	Explain in detail about 7	Fransconductance.		[L2][CO2]	[6 M]	
8	a)	Derive the relationship	between $I_{ds} \& V_{ds}$ in saturated	l region.	[L3][CO2]	[6 M]	
	b)	Give the basic steps for	IC fabrication.		[L2][CO2]	[6 M]	
9	a)	Define output conductat	nce and figure of merit		[L1][CO2]	[6 M]	
	b)	Show the circuit diagram	n of BiCMOS inverter and ex	xplain its operations	[L4][CO2]	[6 M]	
10	a)	realization?	orms of Pull Up Loads? whic		[L1][CO2]		
	b)	Derive the expression for	or threshold voltage for MOS	transistors.	[L3][CO2]	[6 M]	

1	a)	Explain the steps involved in VLSI Design flow.	[L2] [CO3]	[6M]
	b)	Construct the stick diagram of a 2-input CMOS NAND gate.	[L3] [CO3]	[6M]
2	a)	What are lambda-based design rules? Explain.	[L1] [CO3]	[6M]
	b)	Illustrate design rules for wires and MOS transistors.	[L2] [CO3]	[6M]
3	a)	Summarize 2µm based design rules with neat sketches.	[L2] [CO3]	[6M]
	b)	Draw the layout diagram of NMOS inverter circuit such that both input andoutput points are connected with Polysilicon layer.	[L4] [CO3]	[6M]
4	a)	Explain about Stick diagram with one example.	[L2] [CO3]	[6M]
	b)	Sketch the layout diagram for 2-input CMOS NAND gate.	[L3] [CO3]	[6M]
5	a)	Explain 2µm design rules for contacts and transistors.	[L2] [CO3]	[6M]
	b)	Sketch the layout diagram for CMOS inverter.	[L3] [CO3]	[6M]
6	a)	Construct stick diagram for $Y = (\overline{AB + CD})$ in NMOS design style.	[L3] [CO3]	[6M]
	b)	Construct the layout diagram for 2-input CMOS NOR gate.	[L3] [CO3]	[6M]
7		Construct layout diagram for the logic equations in CMOS logic. (i) $\mathbf{Y} = (\mathbf{A} + \mathbf{B})\mathbf{C}$ (ii) $\mathbf{Z} = (\mathbf{A}\mathbf{B} + \mathbf{C}\mathbf{D})\mathbf{E}$	[L3] [CO3]	[12M]
8	a)	Illustrate λ -design rules for contact cuts.	[L2] [CO3]	[6M]
	b)	How a P-MOS transistor forms in lambda-based design rules? Explain.	[L1] [CO3]	[6M]
9	a)	Illustrate stick diagram of AND-OR-INVERTER in CMOS design Style.	[L2] [CO3]	[6M]
	b)	Explain about Implant and demarcation line in stick diagrams with neat sketches.	[L2] [CO3]	[6M]
10	a)	Construct the stick diagram for 2-input CMOS XOR gate.	[L3] [CO3]	[6M]
	b)	Explain different types of MOS layers used in VLSI circuits.	[L2] [CO1]	[6M]

UNIT –II VLSI CIRCUIT DESIGN PROCESS

UNIT –III
GATE LEVEL DESIGN & PHYSICAL DESIGN

-			,	
1	a)	Sketch 2 x 1 mux using transmission gates.	[L3] [CO4]	[6M]
	b)	Explain the implementation of AOI using CMOS design style with neat sketches.	[L2] [CO4]	[6M]
2	a)	Draw the CMOS implementation of 4X1 mux using transmission gates?	[L1][CO3]	[6M]
	b)	Explain pseudo NMOS logic gate?	[L2][CO3]	[6M]
3	a)	What is switch logic? Explain with an example.	[L1] [CO4]	[6M]
	b)	Explain about pass transistors logic with an example.	[L2] [CO4]	[6M]
4	a)	What is pseudo NMOS logic? Explain with an example	[L1] [CO4]	[6M]
	b)	Construct 2-input NAND gate by using pseudo NMOS logic.	[L3] [CO4]	[6M]
5	a)	Explain dynamic CMOS logic circuit with an example.	[L2] [CO4]	[6M]
	b)	List the advantages & disadvantages of dynamic CMOS logic.	[L1] [CO4]	[6M]
6		Explain the following with an example.	[L2] [CO6]	[12M]
		(i) Domino CMOS logic. (ii) NOR A logic.		
7	a)	Explain the criteria for choice of layers.	[L2] [CO6]	[6M]
	b)	Explain about complex logic gates.	[L2] [CO4]	[6M]
8	a)	What is the necessity of floor planning concept in VLSI circuits? Discuss withsuitable example.	[L2] [CO5]	[6M]
	b)	Explain the following terms: (i) Placement (ii) Routing	[L2] [CO5]	[6M]
9	a)	What are the design methods used in physical design cycle? Explain each termwith suitable diagrams.	[L1] [CO4]	[6M]
	b)	What is routing? Explain about different routing techniques?	[L2] [CO3]	[6M]
10	a)	Discuss about the Power Estimation in CMOS circuit.	[L2] [CO5]	[6M]
	b)	Explain about Power delay estimation in VLSI circuits.	[L2] [CO5]	[6M]

	SUBSYSTEM DESIGN					
1	a)	Define the Counters in the digital circuit. Design 4-bit Asynchronous counter.	[L1] [CO4]	[6M]		
-	b)	Define Parity generator logic circuits. Design 4-bit Parity generator using EX-OR gate.	[L3] [CO4]	[6M]		
2	a)	Explain different adder designs in sub circuit design with neat sketches.	[L2] [CO4]	[6M]		
2	b)	Differentiate Comparator and Magnitude Comparator with example.	[L4] [CO4]	[6M]		
	a)	What is shifter? List the types of shift registers and explain.	[L1] [CO4]	[6M]		
3	b)	Explain about 6 transistor Static memory cell.	[L2] [CO4]	[6M]		
4		Explain the following logic circuit. (i)Parity Generator (ii) Comparator.	[L2] [CO4]	[12M]		
5		Design an Arithmetic and Logic Unit circuit with four functions using multiplexers and explain its operation.	[L3] [CO4]	[12M]		
6	a)	Compare different types of memory elements.	[L4 [CO4]	[6M]		
U	b)	Develop the 4x4 array multiplier.	[L3] [CO4]	[6M]		
7	a)	Explain the working of Zero/one detector implemented with adder circuit.	[L2] [CO4]	[6M]		
	b)	List the advantages and applications of Zero/one detector.	[L1] [CO4]	[6M]		
8		Summarize the following. (i) Unsigned magnitude comparator. (ii) Asynchronous Counters.	[L2] [CO4]	[12M]		
0	a)	Construct and explain the circuit diagram of 3-bit LFSR with example.	[L3] [CO4]	[6M]		
9	b)	Construct and explain the Johnson counter.	[L3] [CO4]	[6M]		
	a)	Construct and explain the circuit diagram of 4-bit Ripple Carry Adder.	[L3] [CO4]	[4M]		
10	b)	Construct and explain the ripple counter.	[L3] [CO4]	[4M]		
	c)	Explain about 4 transistor Dynamic memory cell.	[L2] [CO4]	[4M]		

UNIT –IV SUBSYSTEM DESIGN

1	a)	Compare PROM, PAL, and PLA with an example.	[L2] [CO6]	[6M]
	b)	Design the PAL Structure for the Boolean function $f_1(a,b,c,d)=ab+bc \& f_2(a,b,c,d)=ab+cd$.	[L3] [CO6]	[6M]
2	a)	Illustrate the architecture of FPGA with neat sketch.	[L2] [CO6]	[6M]
	b)	Discuss about the merits of FPGA over other PLD architectures.	[L2] [CO5]	[6M]
3	a)	Describe about CPLD structure in detail and explain each block.	[L1] [CO5]	[6M]
	b)	Generalize the design approach for VLSI system design.	[L2] [CO6]	[6M]
4		Design the following functions in PLA structure.	[L3] [CO5]	[12M]
		(i) Y1=A'B'C'+ABC+A'B+ABC'		
		(ii) Y2=ABC+A'B'C+AC		
		(iii) Y3=A'BC'+AB'C+B'C'		
5	a)	Explain in detail about standard cell design with suitable diagrams.	[L2] [CO6]	[6M]
	b)	Give examples of various fault models available for VLSI testing?	[L2] [CO6]	[6M]
6	a)	What is the need for testing? Explain about Fault simulation.	[L1] [CO6]	[6M]
	b)	Give a logic circuit example in which stuck-at-1 fault and stuck-at-0 faultare indistinguishable.	[L2] [CO6]	[6M]
7	a)	What is FPGA. Draw and explain basic structure of FPGA.	[L2] [CO5]	[6M]
	b)	Discuss about the Fault coverage and how to find it?	[L1] [CO6]	[6M]
8		Explain Chip Level Test techniques and its methodology.	[L2] [CO6]	[12M]
9	a)	What is testing? Explain any three test principles.	[L1] [CO6]	[6M]
	b)	What is controllability and observability? Give examples to explain it.	[L2] [CO6]	[6M]
10		What is BILBO? Draw the logic diagram of BILBO & explain its operation in different modes?	[L1 & L2] [CO6]	[12M]
		Prepared by		

UNIT –V

Prepared by

Dr. Savitesh Madhulika Sharma

Mr T.Prasad

Department of ECE,

SISTK,Puttur.